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Abstract 

Derivative lattices are related to one another by 
transformation matrices having rational elements. A 
simple algorithm for finding these matrices consists in 
testing if the scalar products of the vectors defining two 
arbitrary primitive cells of two lattices can be exactly or 
approximately related by equations with rational 
coefficients. A rational relationship indicates that two 
or more lattices have a number of geometrical features 
in common such as common superlattices, sublattices, 
etc. The algorithm can, therefore, be applied to a 
variety of crystallographic problems such as the study 
of twinning, the indexing of powder patterns, single- 
crystal diffractometry and the critical evaluation of 
crystal data. Five examples are discussed in detail. 

Introduction 

In the study of crystalline materials, it is often 
necessary to find the relationship between two or more 
crystal lattices, either identical or different from one 
another. Typical cases in which a knowledge of lattice 
relationships are required occur, for example, in the 
critical evaluation of data to be included in major 
compilations such as the Crystal and Powder Data 
Files, in the analysis of twinning and coincidence-site 
lattices, in the study of inter-related structures, in the 
evaluation of the results obtained from powder-index- 
ing procedures, in single-crystal diffractometry, and in 
many other areas of crystallography. 

The method commonly employed to study how two 
lattices are related is based on converting an arbitrary 
cell into a standard one, such as the Delaunay cell 
(Delaunay, 1933), the reduced cell (Santoro & Mighell, 
1970), the Crystal Data cell (Donnay & Ondik, 1972), 
or the cell used in International Tables for X-ray 
Crystallography (1969, p. 7). This method is par- 
ticularly suitable to classify crystalline materials, to 
establish symmetry, and to recognize if two cells 
describe the same lattice. It has, however, one serious 
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disadvantage in that it does not allow one to determine 
easily if the two lattices are derivative of each other, i.e. 
if one is the super-, sub-, or composite-lattice of the 
other (these lattices are defined by Santoro & MigheU, 
1972). This is unfortunate because many of the 
crystallographic problems mentioned previously stem 
from the derivative character of lattices. For example: 
(i) twinning by reticular merohedry takes place because 
a superlattice of the crystal lattice has elements of 
symmetry beyond those of the crystal lattice; (ii) the 
solutions obtained in the indexing of a powder pattern 
are commonly derivative lattices; (iii) cell determin- 
ations carried out with automated four-circle diffrac- 
tometers n o t  infrequently yield lattices which are 
derivative of the true lattice of the crystal. 

This shortcoming can be circumvented by devising 
practical procedures to determine the matrices relating 
arbitrary cells of two or more lattices. The relevant 
properties of the lattices can then be derived from the 
nature of the transformation matrices. A method based 
on such an approach is described in the following 
sections. 

Theory 

Let us consider two lattices A and A'  defined by the 
primitive triplets of noncoplanar translations a i and 
a~ (i = 1, 2, 3). As the metric properties of a lattice are 
completely specified by any primitive triplet, a i and a~ 
can be chosen arbitrarily. Let us assume that A and A' 
have a common origin in a node, but arbitrary mutual 
orientation. The two lattices are then related by the 
transformation 

a i =  Z Bo'a~ (i , j= 1,2,3). (1) 
J 

The elements B U of matrix B can be any real numbers. 
Let us suppose, however, that they are all rational. In 

this case we have: 

Theorem. If two lattices A and A' are related by a 
transformation matrix B having rational elements B U, 
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the two lattices have a superlattice F in common, and 
conversely. 

If the Bi~s are rational, we may write 

B i j  = N i j / n i y  = 1)ij/~i , (2) 

where N, n, v and ,u are integers and/z  t is the smallest 
common multiple of nil, nit and r/t3. Substituting in (1), 
we have 

The lattices A, therefore, are common to A and A' and 
can be obtained from a i and a~ by means of the 
matrices LR and LR' ,  respectively. 

I fA  and A' have a superlattice in common, matrix B 
can be expressed by means of (5). If we generate the 
superlattice from A by means of a matrix Q such that 
the elements Q0 are integers and Q, in addition, is upper 
triangular with 

o r  

a t =  Z --v° aj 
j at  

O<Qij< Qjj with i < j  (8) 

(Santoro & Mighell, 1973; especially the Appendix), 
then (5) can be written 

/zi a t = Z vu a~ = s t. (3) 
Y 

Since/z i and v o are integers, the translations/z i a t define 
a superlattice of A ~f and the translations v U a~ and ~ y v o 
aj superlattices of A'. It follows that the translations s~ 
define a lattice F which is a superlattice of both A and 
A r . 

To prove the converse, let us suppose that A and A' 
have a common superlattice F defined by the trans- 
lations s i. We may write 

s, = y Rty a j =  y R~yaj, (4) 
J J 

where the elements R e and R~j are integers. Comparing 
with (1), we obtain 

B =  R-' R' (5) 

in which the elements B U are rational. 

From the above results, it follows that: 

Theorem. If two lattices A and A' have a superlattice F 
in common, they also have in common the derivative 
lattices A of F. 

According to definitions given elsewhere (Santoro & 
Mighell, 1972), the derivative lattices A o f / "  are all the 
lattices obtained from Fwith  the transformation 

d i = y.  L U sj, (6) 
J 

where the primitive triplet of translations s~ define F and 
the elements Lij are rational numbers. From (6) and 
(4), we obtain 

d i = Z L ~ i ~ R j k a k = ~ L i j Z R j t a ~  ( k , l =  1 ,2 ,3) . (7 )  
j k j I 

¢ The traditional definitions are followed in this paper. Given an 
original lattice, a superlattice is built on a multiple cell, from which 
all centering nodes are omitted, and a sublattice is built on a 
submultiple cell, the cell volumes becoming, respectively, larger or 
smaller than that of  the original primitive cell. In some publications 
(e.g. Cassels. 1971) a superlattice is called 'sublattice'  (of the 
original lattice) where the term 'subgroup '  is meant. 

B =  Q-1 P, (9) 

where the elements Pe are also integers. Equation (9) 
has been used to find the common superlattice with the 
smallest cell volume and the common sublattice with 
the largest cell volume consistent with any given 
rational matrix B. 

If not all the elements B o are rational, the lattices A 
and A' are not related to each other in a specialized 
manner, i.e. the two lattices do not have common 
geometric properties or features. The previous treat- 
ment shows that the rational solutions of (1) are the 
only ones of crystallographic interest. 

These can be found with the following procedure. 
Setting 

! I I 
h i j =  ai .  aj ,  A i j =  a i . a ) ,  (10) 

from (1), we obtain 

Aij = (Z Bik a~,). (Z  Bit a~) = Z Z Bik BjtAkt 
k 1 k 1 

( k , t =  1,2 ,3) .  (11) 

Rational solutions of (11) can be found, if they exist, by 
substituting for the unknown elements Bik and BjI 
rational numbers to be generated systematically in 
some convenient way, e.g. by writing 

Bij = Ni/nij 

and by assigning to N e and n e all possible integral 
values. In many practical applications these integers 
can be limited to a small interval, for example ( - 5 ,  5), 
because the relationships of crystallographic interest 
usually involve simple rational numbers. 

If two lattices are not related exactly, (11) becomes 

~ Bik BjtA'kt - A i / =  St1, (12) 
k 1 

The rational relationship between the two lattices will 
be acceptable or unacceptable depending on the 
magnitude of the values of Sij that can be tolerated in a 
given problem. 
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Applications 

(a) Ambiguities in determining unit cells from powder 
data 

In the automatic indexing of powder patterns with 
the program of Visser (1969), the output consists of 
four candidate unit cells. The algorithm described in the 
previous section has been used to relate these cells with 
one another and with the correct unit cell, if known. 
Not uncommonly,  two or more of the four lattices were 
found to be in a derivative relationship with each other 
and/or  with the true lattice of the crystal. 

An example has been encountered in the indexing of 
chromium phosphate hydrate, CrPO4.6H20.  From a 
set of observed d spacings, the best solution found by 
the indexing method was 

a = 6.030, b =  11.471, c =  11.711A,; 

a = 94.72, f l =  97.72, y =  99.49 ° 

A single-crystal analysis carried out with a Syntex 
automated diffractometer, on the other hand, showed 
that the correct cell is 

a '  = 6.003, b' = 6-007, c' = 23-389 A; 

a '  = 97.04, fl' = 92.61, 7' = 110"16°.* 

Both these cells are reduced, and one must therefore 
conclude that they define different lattices. The B- 
matrix algorithm, applied to the two cells, established 
that they are related by the transformation 

a,' = (-100/½½0/-1~-~1- 2) a t (i = 1, 2, 3). 

Since the determinant of the transformation matrix is 
unity and since there are fractional elements, the two 
lattices bear a composite relationship to each other. 

This example shows that in certain cases the lattice 
determined by the indexing program is related to the 
correct one by a rational matrix. In this case the two 
lattices are in a composite relationship and have many 
d spacings in common. Therefore, the observed 
diffraction lines, because of accidental absences, are 
consistent almost equally well with cell a t and a~. 

(b) .Relationship between cells determined from dff- 
ferent crystals of the same species 

There are lattices in which two or more unit cells are 
dimensionally similar. This may cause problems in 
single-crystal work whenever it is necessary to use two 
or more individuals of the same material to cGllect a 
complete set of data. An example of such a lattice has 

* The lattice defined by this cell is monoclinic A-centered. The 
refined parameters are a = 23.473, b = 6.890, c = 9.882/k, fl = 
99.42 ° (Morris, McMurdie, Evans, Paretzkin, deGroot, Weeks & 
Newberry, 1978, p. 27). 

been reported by DeCamp (1976) and is summarized 
below. 

In a study of the structure of condelphine hydro- 
iodide, two experimenters, using different crystals, 
described the crystal lattice by means of two different 
cells: 

a = 9.34, b = 17.39, e = 9 . 1 0 A ;  

and 

a =  94.85, f l =  119.15, y =  88.57 ° 

a '  = 9.32, b' = 17.45, c' = 9.09 A; 

a '  = 94.84, fl' = 118.83, y' = 86.50 °. 

The differences in lattice parameters were ascribed, at 
first, to experimental errors, especially absorption. 
Subsequent work revealed this not to be the case, 
because intensities of corresponding reflections differed 
far more than the experimental errors would justify. 
The application of the B-matrix algorithm immediately 
established the relation between the two cells 

a~ = (101/0i0/00i) at. 
In the original paper, reduction theory was used to 
show that the two cells describe the same lattice and to 
find the relation between them. The present method, 
however, is to be preferred in problems of this type, not 
only because it is more direct, but especially because 
there could be in the lattice more than two cells with 
similar parameters, which would be revealed im- 
mediately by the B-matrix algorithm, but could not be 
detected by the reduction procedure. 

(c) Relation between different unit cells of the same 
crystal determined by an automated four-circle diffrac- 
tometer 

In determining the unit cell of a crystal with a 
four-circle diffractometer, there are cases in which 
accidental or systematic extinctions (as well as other 
causes) may lead to the choice in reciprocal space of 
a superlattice of the corrgct one. An example of this 
type of error was encountered in the study of the struc- 
ture of (3-chloro-2-hydroxy-5-nitrophenyl) (2'-chloro- 
phenyl)iodonium hydroxide, inner salt (C~2H6C12- 
INO3). 

The solution of this structure was initially attempted 

by using the data collected on the basis of the 
monoclinic lattice described by the cell 

a = 1 3 . 5 9 5 ,  b = 4 . 6 3 8 ,  c = 1 0 . 3 2 1 A ,  f l = 9 8 . 2 8  ° . 

In the last stages of refinement, however, it was found 
that two different models refined equally well to an R of 
about 8%. This result could be ascribed to disorder in 
the structure or to an incorrect procedure in collecting 
the data. By mounting the crystal a second time, the 
following cell was determined: 

a '  = 15.928, b' = 4.623, c' = 18.271 A, fl' = 105.58 ° 
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(Hubbard,  Himes, Mighell & Page, 1980). The B- 
matrix algorithm immediately revealed that the two 
cells are related by the transformation 

a~ = 1 a I. 

0 

This matrix shows that by using the first cell, only half 
of the data were collected and used in the structure 
determination. With the second cell, the structure was 
successfully solved and refined. 

(d) Studies of related structures 

In many problems of crystal chemistry it is impor- 
tant to establish the relationship between two or more 
structures. In this area the B-matrix algorithm is 
particularly useful, as the following example illustrates. 

The compound Rb2Pb(MnO2)2 is structurally related 
to palmierite, K2Pb(SO4)2, and, on the basis of 
chemical considerations and values of the ionic radii, 
one could predict a rhombohedral  lattice with para- 
meters (in hexagonal axes) 

a = 6-058, c = 21.73 A. 

The powder pattern of the Rb compound, however, 
although similar to that of palmierite, could not be 
indexed in terms of the hexagonal cell and was found to 
be consistent with a C-centered monoclinic cell of 
parameters 

a = 14.905 (5), b = 6.070 (3), c = 10.477 (3) A, 

/~= 1 0 3 . 5 5  ° (3) 

(Morris, McMurdie,  Evans, Paretzkin, deGroot, Weeks 
& Newberry, 1978, p. 63). The corresponding reduced 
form (No. 39, International Tables for X-ray Crystal- 
lography, 1969, p. 530), 

( a . a  b . b  e . e ) (  36.845 64.751 109-768~ 

b . e  a . e  a . b  - \ - 1 8 . 2 9 4  0 - -18 .422] '  

shows that e. e ~_ 3 a.  a and b.  e ___ a.  b, i.e. there is more 
specialization than the one required by a monoclinic 
C-centered cell, indicating that the lattice has derivative 
lattices of symmetry higher than monoclinic. 

The B-matrix algorithm showed that a primitive cell 
of the monoclinic lattice can be obtained from a 
primitive cell of  the rhombohedral  lattice with the 
transformations 

(101/011/002) (200/010/001) (100/020/001).  

This indicates that the monoclinic lattice can be 
oriented in space in three different ways with respect to 
the hexagonal lattice, i.e. it is possible mutually to 
orient three monoclinic individuals so that a common 

hexagonal sublattice extends from one to the others 
with little or no disturbance. These are the conditions 
required for twinning (Santoro, 1974). The existence of 
twins in Rb2Pb(MnO2) 2 is, therefore, quite possible, 
and anyone working on the compound by single-crystal 
methods should be aware of  it. 

(e) Studies of the geometrical properties of lattices 

It has been shown (Santoro & Mighell, 1970) that in 
some lattices more than one cell is based on 'the 
shortest three' noncoplanar translations. Gruber (19 73) 
has shown that, at most, five different cells of this type 
may  exist in the same lattice. For identification 
purposes, it is necessary to describe a crystal in terms 
of only one of these cells and the special conditions of 
reduction theory provide a way to make such a 
selection. 

On the other hand, there are cases in which it is 
useful to find all five of the ceils and relate them to one 
another, and the B-matrix algorithm represents a simple 
procedure to study this type of problem. As an 
example, let us consider the triclinic lattice studied by 
Gruber (1973) and described by the cell 

a = 2, b = 4 ,  c = 4 A ,  

a =  6 0 o 0 0 ' , f l =  79 ° 12', y =  75031 ' . 

As we require only the equality of cell edges, only the 
equations 

All= Z ~BtkBuAkl (k, l, i = 1, 2, 3) 
k l 

need to be satisfied and the required values of the 

Table 1. The five unit cells based on the shortest 
noncoplanar translations of the lattice of example (e) 

In the columns are shown the transformation matrices for 
obtaining cells 2, 3, 4 and 5 from cell 1, the axial lengths (A) and 
the interaxial angles. 

( O!)ol 
11° !) 

(i ool 
(i 1°1 

--1 
0 

a = 2 a = 60 ° 00' 
b = 4 t =  79 ° 12' 
c = 4  y= 75o31 ' 

a = 2 a = 60 ° 00' 
b = 4  t =  86024 ' 
c = 4  y= 75031 ' 

a = 2 a = 120 ° 00' 
b = 4  t =  93°36' 
c = 4  y= 100 ° 48' 

a = 2  a =  117057 ' 
b = 4  t =  93036 ' 
c =4 y= 104028 ' 

a = 2  a =  113058 ' 
b = 4 fl = 100 ° 48' 
c =4  Y= 104° 28' 
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elements B U are restricted to integers for which I BI = 1. 
The algorithm yields the five cells given in Table 1. 

Conclusions 

In the previous section only a few examples of the 
application of the algorithm have been illustrated. 
Many more could have been given. The method 
represents a practical tool to study inter- and intra- 
lattice relationships and, for this reason, is particularly 
suited to carry out research on published crystal- 
lographic data. Applications of the procedure, under- 
way or planned, comprise cross-referencing of the 
single-crystal and powder data files, routine identifi- 
cation and registration procedures, and a systematic 
study of twinning, especially to clarify the relationship 
between the geometrical and structural aspects of 
twins. 
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Abstract 

A formula for the expected values of triplet phase 
invariants is derived in the acentric case from third- 
order determinantal joint probability distributions. 
Theoretical calculations based on this and earlier 
formulae are compared with expected values observed 
for a roughly equal-atom structure and one containing 
a heavy atom. 

Introduction 

The expected value of a triplet phase invariant is 
affected by the knowledge of the magnitudes of 
appropriate structure factors. It is possible to obtain 
expressions for such expected values from joint 
probability distributions involving the triplet invariants 
of interest and certain associated structure-factor 
magnitudes. A general joint probability distribution 
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function has been derived recently (Karle, 1978) that is 
based on the determinants that provide the necessary 
and sufficient conditions that a Fourier series represent- 
ing a crystal structure be non-negative (Karle & 
Hauptman, 1950). These determinantal joint prob- 
ability distributions have already been applied in the 
fourth order (Karle, 1979, 1980)to obtain conditional 
distributions for the triplet invariants ~Ok _k2 -~" ~0 k,+k ' -]- 
Ck2-k3, given the structure-factor magnitudes I~'kl-k21, 
Iff_k,+k31, Iffk2_k31 and many sets of Iffk[, I~ek2l, I~'~k3l. 

The third-order determinants and determinantal joint 
probability distributions give the main formulae for 
phase determination, Z2 and the sum of angles formula. 
One question of interest is how well the new distri- 
butions represent the expected values of the triplet 
phase invariants, ~Pk, + ~P-k, + q~-k,+k,, given the three 
magnitudes I~ekl, I ~ k [  , I~t'_k,+k2l. Such expected 
values have been investigated in some detail previously 
(Karle, 1972; Karle & Gilardi, 1973) in connection 
with other forms for the appropriate joint probability 
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